Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.391
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731873

The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.


Iron Chelating Agents , Iron Overload , Humans , Iron Overload/drug therapy , Iron Overload/metabolism , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/pharmacology , Anemia, Iron-Deficiency/drug therapy , Anemia, Iron-Deficiency/metabolism , Iron/metabolism , Animals , Deferiprone/therapeutic use , Deferiprone/pharmacology
2.
Sci Rep ; 14(1): 10054, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698053

ß-Thalassaemia is one of the most common genetic diseases worldwide. During the past few decades, life expectancy of patients has increased significantly owing to advance in medical treatments. Cognitive impairment, once has been neglected, has gradually become more documented. Cognitive impairment in ß-thalassaemia patients is associated with natural history of the disease and socioeconomic factors. Herein, to determined effect of ß-thalassaemia intrinsic factors, 22-month-old ß-thalassaemia mouse was used as a model to assess cognitive impairment and to investigate any aberrant brain pathology in ß-thalassaemia. Open field test showed that ß-thalassaemia mice had decreased motor function. However, no difference of neuronal degeneration in primary motor cortex, layer 2/3 area was found. Interestingly, impaired learning and memory function accessed by a Morris water maze test was observed and correlated with a reduced number of living pyramidal neurons in hippocampus at the CA3 region in ß-thalassaemia mice. Cognitive impairment in ß-thalassaemia mice was significantly correlated with several intrinsic ß-thalassaemic factors including iron overload, anaemia, damaged red blood cells (RBCs), phosphatidylserine (PS)-exposed RBC large extracellular vesicles (EVs) and PS-exposed medium EVs. This highlights the importance of blood transfusion and iron chelation in ß-thalassaemia patients. In addition, to improve patients' quality of life, assessment of cognitive functions should become part of routine follow-up.


Cognitive Dysfunction , Disease Models, Animal , Hippocampus , beta-Thalassemia , Animals , beta-Thalassemia/pathology , beta-Thalassemia/complications , beta-Thalassemia/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Mice , Hippocampus/pathology , Hippocampus/metabolism , Male , Neurons/metabolism , Neurons/pathology , Iron Overload/pathology , Iron Overload/metabolism , Iron Overload/complications , Extracellular Vesicles/metabolism , Erythrocytes/metabolism , Erythrocytes/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Maze Learning
3.
Part Fibre Toxicol ; 21(1): 17, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561847

BACKGROUND: Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS: We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS: Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.


Ferroptosis , Iron Overload , MicroRNAs , Nanoparticles , Humans , Myocytes, Cardiac , Silicon Dioxide/metabolism , Iron Overload/metabolism , Iron Overload/pathology , Iron/metabolism , Iron/pharmacology , MicroRNAs/metabolism , Nanoparticles/toxicity
4.
Redox Biol ; 72: 103160, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631120

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.


Cell Differentiation , Ferroptosis , Goblet Cells , Iron Overload , Oxidative Stress , Receptors, Notch , Signal Transduction , Stem Cells , Animals , Ferroptosis/drug effects , Mice , Goblet Cells/metabolism , Iron Overload/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation/drug effects , Receptors, Notch/metabolism , Oxidative Stress/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Male
5.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Article En | MEDLINE | ID: mdl-38504590

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Iron Overload , Isoflavones , Liver Diseases, Alcoholic , MAP Kinase Signaling System , Pueraria , Pueraria/chemistry , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/pathology , Animals , Iron Overload/drug therapy , Iron Overload/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , MAP Kinase Signaling System/drug effects , Male , Oxidative Stress/drug effects , Genistein/pharmacology , Genistein/chemistry , Mice , Apoptosis/drug effects
6.
Arch Biochem Biophys ; 754: 109954, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432564

Iron overload has detrimental effects on bone marrow mesenchymal stem cells (BMMSCs), cells crucial for bone marrow homeostasis and hematopoiesis support. Excessive iron accumulation leads to the production of reactive oxygen species (ROS), resulting in cell death, cell cycle arrest, and disruption of vital cellular pathways. Although apoptosis has been extensively studied, other programmed cell death mechanisms including autophagy, necroptosis, and ferroptosis also play significant roles in iron overload-induced bone marrow cell death. Studies have highlighted the involvement of ROS production, DNA damage, MAPK pathways, and mitochondrial dysfunction in apoptosis. In addition, autophagy and ferroptosis are activated, as shown by the degradation of cellular components and lipid peroxidation, respectively. However, several compounds and antioxidants show promise in mitigating iron overload-induced cell death by modulating ROS levels, MAPK pathways, and mitochondrial integrity. Despite early indications, more comprehensive research and clinical studies are needed to better understand the interplay between these programmed cell death mechanisms and enable development of effective therapeutic strategies. This review article emphasizes the importance of studying multiple cell death pathways simultaneously and investigating potential rescuers to combat iron overload-induced bone marrow cell death.


Iron Overload , Iron , Humans , Iron/metabolism , Reactive Oxygen Species/metabolism , Bone Marrow/metabolism , Iron Overload/metabolism , Apoptosis , Bone Marrow Cells/metabolism
7.
Mol Nutr Food Res ; 68(6): e2300723, 2024 Mar.
Article En | MEDLINE | ID: mdl-38425278

SCOPE: Oxidative stress caused by iron overload tends to result in intestinal mucosal barrier dysfunction and intestinal microbiota imbalance. As a neutral and nonprotein amino acid, L-Citrulline (L-cit) has been implicated in antioxidant and mitochondrial amelioration properties. This study investigates whether L-cit can alleviate iron overload-induced intestinal injury and explores the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are intraperitoneally injected with iron dextran, then gavaged with different dose of L-cit for 2 weeks. L-cit treatment significantly alleviates intestine pathological injury, oxidative stress, ATP level, and mitochondrial respiratory chain complex activities, accompanied by ameliorating mitochondrial quality control. L-cit-mediated protection is associated with the upregulation of Glutathione Peroxidase 4 (GPX4) expression, inhibition Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, and improvement of gut microbiota. To investigate the underlying molecular mechanisms, Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2) cells are treated with L-cit or AMP-activated Protein Kinase (AMPK) inhibitor. AMPK signaling has been activated by L-cit. Notably, Compound C abolishes L-cit's protection on intestinal barrier, mitochondrial function, and antioxidative capacity in IPEC-J2 cells. CONCLUSION: L-cit may restrain ferritinophagy and ferroptosis to regulate iron metabolism, and induce AMPK pathway activation, which contributes to exert antioxidation, ameliorate iron metabolism and mitochondrial quality control, and improve intestinal microbiota. L-cit is a promising therapeutic strategy for iron overload-induced intestinal injury.


Iron Overload , Microbiota , Mice , Animals , Swine , AMP-Activated Protein Kinases/metabolism , Citrulline/metabolism , Citrulline/pharmacology , Mice, Inbred C57BL , Intestines , Antioxidants/metabolism , Iron Overload/metabolism , Iron/metabolism , Mitochondria
8.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38460407

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Acetates , Chlormequat , Iron Overload , Phenols , Spermatogenesis , Animals , Male , Mice , Rats , Chlormequat/metabolism , Chlormequat/toxicity , Iron Overload/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Seeds , Spermatogenesis/drug effects , Testis , eIF-2 Kinase/drug effects , eIF-2 Kinase/metabolism
9.
Mol Metab ; 83: 101921, 2024 May.
Article En | MEDLINE | ID: mdl-38527647

Identification of new mechanisms mediating insulin sensitivity is important to allow validation of corresponding therapeutic targets. In this study, we first used a cellular model of skeletal muscle cell iron overload and found that endoplasmic reticulum (ER) stress and insulin resistance occurred after iron treatment. Insulin sensitivity was assessed using cells engineered to express an Akt biosensor, based on nuclear FoxO localization, as well as western blotting for insulin signaling proteins. Use of salubrinal to elevate eIF2α phosphorylation and promote the unfolded protein response (UPR) attenuated iron-induced insulin resistance. Salubrinal induced autophagy flux and its beneficial effects on insulin sensitivity were not observed in autophagy-deficient cells generated by overexpressing a dominant-negative ATG5 mutant or via knockout of ATG7. This indicated the beneficial effect of salubrinal-induced UPR activation was autophagy-dependent. We translated these observations to an animal model of systemic iron overload-induced skeletal muscle insulin resistance where administration of salubrinal as pretreatment promoted eIF2α phosphorylation, enhanced autophagic flux in skeletal muscle and improved insulin responsiveness. Together, our results show that salubrinal elicited an eIF2α-autophagy axis leading to improved skeletal muscle insulin sensitivity both in vitro and in mice.


Autophagy , Cinnamates , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2 , Insulin Resistance , Thiourea , Thiourea/analogs & derivatives , Unfolded Protein Response , Animals , Thiourea/pharmacology , Cinnamates/pharmacology , Autophagy/drug effects , Mice , Eukaryotic Initiation Factor-2/metabolism , Unfolded Protein Response/drug effects , Phosphorylation , Male , Endoplasmic Reticulum Stress/drug effects , Salicylates/pharmacology , Mice, Inbred C57BL , Iron/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Iron Overload/metabolism , Signal Transduction/drug effects
10.
Toxicology ; 504: 153766, 2024 May.
Article En | MEDLINE | ID: mdl-38432408

Blood transfusion-requiring diseases such as sickle cell anemia and thalassemia are characterized by an imbalance between iron intake and excretion, resulting in an iron overload (IOL) disorder. Hepatotoxicity is prevalent under the IOL disorder because of the associated hepatocellular redox and inflammatory perturbation. The current work was devoted to investigate the potential protection against the IOL-associated hepatotoxicity using chrysin, a naturally-occurring flavone. IOL model was created in male Wistar rats by intraperitoneal injection of 100 mg/kg elemental iron subdivided on five equal injections; one injection was applied every other day over ten days. Chrysin was administered in a daily dose of 50 mg/kg over the ten-day iron treatment period. On day eleven, blood and liver samples were collected and subjected to histopathological, biochemical, and molecular investigations. Chrysin suppressed the IOL-induced hepatocellular damage as revealed by decreased serum activity of the intracellular liver enzymes and improved liver histological picture. Oxidative damage biomarkers, and pro-inflammatory cytokines were significantly suppressed. Mechanistically, the levels of the redox and inflammation-controlling proteins SIRT1 and PPARγ were efficiently up-regulated. The liver iron load, NLRP3 inflammasome activation, and NF-κB acetylation and nuclear shift were significantly suppressed in the iron-intoxicated rats. Equally important, the level of the antioxidant protein Nrf2 and its target HO-1 were up-regulated. In addition, chrysin significantly ameliorated the IOL-induced apoptosis as indicated by reduction in caspase-3 activity and modulation of BAX and Bcl2 protein abundance. Together, these findings highlight the alleviating activity of chrysin against the IOL-associated hepatotoxicity and shed light on the role of SIRT1, NLRP3 inflammasome, and Nrf2 signaling as potential contributing molecular mechanisms.


Chemical and Drug Induced Liver Injury , Flavonoids , Inflammasomes , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Wistar , Signal Transduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Male , Flavonoids/pharmacology , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Signal Transduction/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Rats , Iron/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Iron Overload/metabolism , Iron Overload/drug therapy , Iron Overload/complications
11.
Cell Death Differ ; 31(4): 524-539, 2024 Apr.
Article En | MEDLINE | ID: mdl-38388728

Cold-inducible RNA binding protein (CIRBP), a stress response protein, protects cells from mild hypothermia or hypoxia by stabilizing specific mRNAs and promoting their translation. Neurons subjected to hypobaric hypoxia insult trigger various cell death programs. One of these is ferroptosis, a novel non-apoptotic form of programmed cell death, which is characterized by excessive iron ion accumulation and lipid peroxidation. Here, we establish that CIRBP can regulate neuronal ferroptosis both in vivo and in vitro. We observe that hypoxia leads to neuronal death via intracellular ferrous iron overload and impaired antioxidant systems, accompanied by suppressed CIRBP expression. Genetic enrichment of CIRBP in hippocampal neurons CIRBPTg mice bred with Emx1-Cre mice attenuates hypoxia-induced cognitive deficits and neuronal degeneration. Mechanistically, CIRBP alleviates neuronal ferroptosis and intracellular ferrous ion accumulation by binding to the mitochondrial ferritin (FTMT) 3'UTR to stabilize mRNA and promote its translation. Our novel study shows the critical role of CIRBP in the progression of ferroptosis, and provides promising therapeutic target for hypoxia-induced neurological diseases.


Ferroptosis , Iron Overload , Neurons , RNA-Binding Proteins , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Neurons/metabolism , Neurons/pathology , Iron Overload/metabolism , Iron Overload/pathology , Hypoxia/metabolism , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/pathology , Iron/metabolism , Humans
12.
Pediatr Blood Cancer ; 71(5): e30923, 2024 May.
Article En | MEDLINE | ID: mdl-38385860

BACKGROUND: In pediatric transfusion-dependent thalassemia (TDT) patients, we evaluated the prevalence, pattern, and clinical associations of pancreatic siderosis and the changes in pancreatic iron levels and their association with baseline and changes in total body iron balance. PROCEDURE: We considered 86 pediatric TDT patients consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network. Iron overload (IO) was quantified by R2* magnetic resonance imaging (MRI). RESULTS: Sixty-three (73%) patients had pancreatic IO (R2* > 38 Hz). Global pancreas R2* values were significantly correlated with mean serum ferritin levels, MRI liver iron concentration (LIC) values, and global heart R2* values. Global pancreas R2* values were significantly higher in patients with altered versus normal glucose metabolism. Thirty-one patients also performed the follow-up MRI at 18 ± 3 months. Higher pancreatic R2* values were detected at the follow-up, but the difference versus the baseline MRI was not significant. The 20% of patients with baseline pancreatic IO showed no pancreatic IO at the follow-up. The 46% of patients without baseline pancreatic IO developed pancreatic siderosis. The changes in global pancreas R2* between the two MRIs were not correlated with baseline serum ferritin levels, baseline, final, and changes in MRI LIC values, or baseline pancreatic iron levels. CONCLUSIONS: In children with TDT, pancreatic siderosis is a frequent finding associated with hepatic siderosis and represents a risk factor for myocardial siderosis and alterations of glucose metabolism. Iron removal from the pancreas is exceptionally challenging and independent from hepatic iron status.


Iron Overload , Siderosis , Thalassemia , beta-Thalassemia , Humans , Child , Iron , beta-Thalassemia/complications , beta-Thalassemia/diagnostic imaging , beta-Thalassemia/therapy , Siderosis/complications , Siderosis/metabolism , Siderosis/pathology , Iron Overload/diagnostic imaging , Iron Overload/etiology , Iron Overload/metabolism , Pancreas/diagnostic imaging , Pancreas/metabolism , Pancreas/pathology , Thalassemia/complications , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Ferritins , Glucose/metabolism
13.
Int J Biochem Cell Biol ; 169: 106553, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417568

Given the high concentration of iron in the micro-environment of ovarian endometriosis, it is plausible to hypothesize that ectopic endometrial cells may be more susceptible to undergoing ferroptosis. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. In this study, we examined the impact on ectopic endometrial stromal cells (EESCs) of iron overload and an inducer of ferroptosis. We found that the iron concentration in the ovarian endometriosis was much higher than control samples. Treatment of cultured EESCs with ferric ammonium citrate (FAC) increase the sensitivity to undergo ferroptosis. By analyzing the RNA-seq results, it was discovered that zeste 2 polycomb repressive complex 2 subunit (EZH2) was significantly downregulated in ferroptosis induced EESCs. Moreover, overexpression of EZH2 effectively prevented the induction of ferroptosis. In addition, the activity or expression of EZH2 is directly and specifically inhibited by the methyltransferase inhibitor GSK343, which raises the sensitivity of stromal cells to ferroptosis. Taken together, our findings revealed that EZH2 act as a suppressor in the induced cell ferroptosis through a PRC2-independent methyltransferase mechanism. Therefore, blocking EZH2 expression and inducing ferroptosis may be effective treatment approaches for ovarian endometriosis.


Endometriosis , Ferroptosis , Iron Overload , Ovarian Neoplasms , Female , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Endometriosis/metabolism , Polycomb Repressive Complex 2/metabolism , Ovarian Neoplasms/metabolism , Iron Overload/metabolism , Stromal Cells/metabolism , Iron/metabolism , Tumor Microenvironment
14.
Toxicol Appl Pharmacol ; 484: 116845, 2024 Mar.
Article En | MEDLINE | ID: mdl-38331104

Liver fibrosis could progress to liver cirrhosis with several contributing factors, one being iron overload which triggers ferroptosis, a form of regulated cell death. Rifaximin, a non-absorbable antibiotic, has shown promise in mitigating fibrosis, primarily by modulating gut microbiota. This study investigated the effects and mechanisms of rifaximin on iron overload-related hepatic fibrosis and ferroptosis. In an iron overload-induced liver fibrosis model in mice and in ferric ammonium citrate (FAC)-stimulated primary hepatocytes, treatment with rifaximin showed significant therapeutic effects. Specifically, it ameliorated the processes of ferroptosis triggered by iron overload, reduced liver injury, and alleviated fibrosis. This was demonstrated by decreased iron accumulation in the liver, improved liver function, and reduced fibrotic area and collagen deposition. Rifaximin also modulated key proteins related to iron homeostasis and ferroptosis, including reduced expression of TFR1, a protein facilitating cellular iron uptake, and increased expression of Fpn and FTH, proteins involved in iron export and storage. In the context of oxidative stress, rifaximin treatment led to a decrease in lipid peroxidation, evidenced by reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and an increase in the reduced glutathione (GSH) and decrease in oxidized glutathione (GSSG). Notably, rifaximin's potential functions were associated with the TGF-ß pathway, evidenced by suppressed Tgfb1 protein levels and ratios of phosphorylated to total Smad2 and Smad3, whereas increased Smad7 phosphorylation. These findings indicate rifaximin's therapeutic potential in managing liver fibrosis by modulating the TGF-ß pathway and reducing iron overload-induced damage. Further research is required to confirm these results and explore their clinical implications.


Ferroptosis , Iron Overload , Animals , Mice , Rifaximin/adverse effects , Iron Overload/complications , Iron Overload/drug therapy , Iron Overload/metabolism , Liver Cirrhosis/metabolism , Iron/metabolism , Transforming Growth Factor beta
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167058, 2024 Apr.
Article En | MEDLINE | ID: mdl-38331112

INTRODUCTION: Excess iron contributes to Hemophilic Arthropathy (HA) development. Divalent metal transporter 1 (DMT1) delivers iron into the cytoplasm, thus regulating iron homeostasis. OBJECTIVES: We aimed to investigate whether DMT1-mediated iron homeostasis is involved in bleeding-induced cartilage degeneration and the molecular mechanisms underlying iron overload-induced chondrocyte damage. METHODS: This study established an in vivo HA model by puncturing knee joints of coagulation factor VIII gene knockout mice with a needle, and mimicked iron overload conditions in vitro by treatment of Ferric ammonium citrate (FAC). RESULTS: We demonstrated that blood exposure caused iron overload and cartilage degeneration, as well as elevated expression of DMT1. Furthermore, DMT1 silencing alleviated blood-induced iron overload and cartilage degeneration. In hemophilic mice, articular cartilage degeneration was also suppressed by intro-articularly injection of DMT1 adeno-associated virus 9 (AAV9). Mechanistically, RNA-sequencing analysis indicated the association between iron overload and cGAS-STING pathway. Further, iron overload triggered mtDNA-cGAS-STING pathway activation, which could be effectively mitigated by DMT1 silencing. Additionally, we discovered that RU.521, a potent Cyclic GMP-AMP Synthase (cGAS) inhibitor, successfully suppressed the downward cascades of cGAS-STING, thereby protecting against chondrocyte damage. CONCLUSION: Taken together, DMT1-mediated iron overload promotes chondrocyte damage and murine HA development, and targeted DMT1 may provide therapeutic and preventive approaches in HA.


Iron Overload , Joint Diseases , Animals , Mice , Cartilage , DNA, Mitochondrial/genetics , Iron/metabolism , Iron Overload/complications , Iron Overload/genetics , Iron Overload/metabolism , Mice, Knockout , Nucleotidyltransferases/metabolism
16.
BMC Pharmacol Toxicol ; 25(1): 22, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38414079

BACKGROUND: Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS: Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS: In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1ß and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1ß, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS: In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.


Hesperidin , Iron Overload , Rats , Male , Animals , Hesperidin/pharmacology , Hesperidin/therapeutic use , Rutin/pharmacology , Rutin/therapeutic use , Rutin/metabolism , Rats, Wistar , Submandibular Gland/metabolism , NF-kappa B/metabolism , Gamma Rays/adverse effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Iron Overload/drug therapy , Iron Overload/metabolism , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/metabolism , Iron/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress
17.
Am J Physiol Cell Physiol ; 326(5): C1367-C1383, 2024 May 01.
Article En | MEDLINE | ID: mdl-38406826

Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.


Disease Models, Animal , Iron , Macular Degeneration , Retinal Pigment Epithelium , Animals , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Mice , Iron/metabolism , Mice, Inbred C57BL , Apoptosis , Oxidative Stress , Cell Line , Cellular Senescence , Iron Overload/metabolism , Iron Overload/pathology , Cell Proliferation , Retina/metabolism , Retina/pathology , Mitochondria/metabolism , Mitochondria/pathology
18.
Eur J Med Res ; 29(1): 101, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38321571

Iron metabolism disorders are implicated in the pathogenesis of Alzheimer's disease (AD). It was previously reported that transferrin receptor (TFR1) expression was upregulated in AD mouse model. However, the precise biological functions of TFR1 in AD progression remains unclear. Herein, we observed a gradual increase in TFR1 protein expression during the differentiation of AD patient-derived induced pluripotent stem cells (AD-iPS). TFR1 knockdown inhibited the protein expression of ferritin and ferritin heavy chain 1 (FTH1), enhanced the expression of ferroportin 1 (FPN1), and decreased intracellular levels of total iron, labile iron, and reactive oxygen species (ROS). Moreover, TFR1 knockdown improved mitochondrial membrane potential (MMP), increased adenosine triphosphate (ATP) content, downregulated mitochondrial fission proteins, and upregulated mitochondrial fusion proteins. TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS, while TFR1 overexpression showed the opposite results. Additionally, TFR1interacted with glycogen synthase kinase 3 beta (GSK3B) and promoted GSK3B expression. GSK3B overexpression reversed the inhibitory effects of TFR1 knockdown on iron overload and mitochondrial dysfunction in AD-iPS differentiated neural cells. In conclusion, TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS by promoting GSK3B expression. Our findings provide a potential therapeutic target for the treatment of AD.


Alzheimer Disease , Induced Pluripotent Stem Cells , Iron Overload , Mitochondrial Diseases , Humans , Mice , Animals , Alzheimer Disease/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Iron/metabolism , Receptors, Transferrin/metabolism , Iron Overload/metabolism
19.
Metab Brain Dis ; 39(4): 559-567, 2024 Apr.
Article En | MEDLINE | ID: mdl-38261161

Mutant huntingtin (mHtt) proteins interact to form aggregates, disrupting cellular functions including transcriptional dysregulation and iron imbalance in patients with Huntington's disease (HD) and mouse disease models. Previous studies have indicated that mHtt may lead to abnormal iron homeostasis by upregulating the expression of iron response protein 1 (IRP1) in the striatum and cortex of N171-82Q HD transgenic mice, as well as in HEK293 cells expressing the N-terminal fragment of mHtt containing 160 CAG repeats. However, the mechanism underlying the upregulation of IRP1 remains unclear. We investigated the levels and phosphorylation status of signal transducer and activator of transcription 5 (STAT5) in the brains of N171-82Q HD transgenic mice using immunohistochemistry staining. We also assessed the nuclear localization of STAT5 protein through western blot and immunofluorescence, and measured the relative RNA expression levels of STAT5 and IRP1 using RT-PCR in both N171-82Q HD transgenic mice and HEK293 cells expressing the N-terminal fragment of huntingtin. Our findings demonstrate that the transcription factor STAT5 regulates the transcription of the IPR1 gene in HEK293 cells. Notably, both the brains of N171-82Q mice and 160Q HEK293 cells exhibited increased nuclear content of STAT5, despite unchanged total STAT5 expression. These results suggest that mHtt promotes the nuclear translocation of STAT5, leading to enhanced expression of IRP1. The nuclear translocation of STAT5 initiates abnormal iron homeostatic pathways, characterized by elevated IRP1 expression, increased levels of transferrin and transferrin receptor, and iron accumulation in the brains of HD mice. These findings provide valuable insights into potential therapeutic strategies targeting iron homeostasis in HD.


Huntington Disease , Iron Overload , Iron Regulatory Protein 1 , Mice, Transgenic , STAT5 Transcription Factor , Up-Regulation , Huntington Disease/metabolism , Huntington Disease/genetics , Animals , Humans , Iron Regulatory Protein 1/metabolism , Iron Regulatory Protein 1/genetics , HEK293 Cells , Mice , Iron Overload/metabolism , STAT5 Transcription Factor/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Cell Nucleus/metabolism , Brain/metabolism
20.
Exp Neurol ; 374: 114703, 2024 Apr.
Article En | MEDLINE | ID: mdl-38281588

Germinal matrix hemorrhage (GMH) is a devasting neurological disease in premature newborns. After GMH, brain iron overload associated with hemoglobin degradation contributed to oxidative stress, causing disruption of the already vulnerable blood-brain barrier (BBB). Mitochondrial ferritin (FTMT), a novel mitochondrial outer membrane protein, is crucial in maintaining cellular iron homeostasis. We aimed to investigate the effect of FTMT upregulation on oxidative stress and BBB disruption associated with brain iron overload in rats. A total of 222 Sprague-Dawley neonatal rat pups (7 days old) were used to establish a collagenase-induced GMH model and an iron-overload model of intracerebral FeCl2 injection. Deferiprone was administered via gastric lavage 1 h after GMH and given daily until euthanasia. FTMT CRISPR Knockout and adenovirus (Ad)-FTMT were administered intracerebroventricularly 48 h before GMH and FeCl2 injection, respectively. Neurobehavioral tests, immunofluorescence, Western blot, Malondialdehyde measurement, and brain water content were performed to evaluate neurobehavior deficits, oxidative stress, and BBB disruption, respectively. The results demonstrated that brain expressions of iron exporter Ferroportin (FPN) and antioxidant glutathione peroxidase 4 (GPX4) as well as BBB tight junction proteins including Claudin-5 and Zona Occulta (ZO)-1 were found to be decreased at 72 h after GMH. FTMT agonist Deferiprone attenuated oxidative stress and preserved BBB tight junction proteins after GMH. These effects were partially reversed by FTMT CRISPR Knockout. Iron overload by FeCl2 injection resulted in oxidative stress and BBB disruption, which were improved by Ad-FTMT mediated FTMT overexpression. Collectively, FTMT upregulation is neuroprotective against brain injury associated with iron overload. Deferiprone reduced oxidative stress and BBB disruption by maintaining cellular iron homeostasis partially by the upregulating of FTMT after GMH. Deferiprone may be an effective treatment for patients with GMH.


Blood-Brain Barrier , Iron Overload , Humans , Infant, Newborn , Rats , Animals , Blood-Brain Barrier/metabolism , Animals, Newborn , Rats, Sprague-Dawley , Up-Regulation , Deferiprone/metabolism , Deferiprone/pharmacology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/metabolism , Oxidative Stress , Iron/metabolism , Iron Overload/metabolism , Homeostasis , Ferritins/metabolism , Tight Junction Proteins/metabolism
...